Sharp $L\;{\rm log}^\alpha L$ inequalities for conjugate functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Inequalities for Polygamma Functions

where μ is a nonnegative measure on [0,∞) such that the integral (2) converges for all x > 0. This means that a function f(x) is completely monotonic on (0,∞) if and only if it is a Laplace transform of the measure μ. The completely monotonic functions have applications in different branches of mathematical sciences. For example, they play some role in combinatorics, numerical and asymptotic an...

متن کامل

Sharp Inequalities for Trigonometric and Hyperbolic Functions

We establish several sharp inequalities for trigonometric and hyperbolic functions. Our results sharpen some known inequalities. Mathematics subject classification (2010): 26D05, 26D07.

متن کامل

Sharp integral inequalities for harmonic functions

Motivated by Carleman’s proof of isoperimetric inequality in the plane, we study some sharp integral inequalities for harmonic functions on the upper halfspace. We also derive the regularity for nonnegative solutions of the associated integral system and some Liouville type theorems.

متن کامل

Sufficient Inequalities for Univalent Functions

In this work, applying Lemma due to Nunokawa et. al. cite{NCKS}, we obtain some sufficient inequalities for some certain subclasses of univalent functions.

متن کامل

Sharp Inequalities for the Beurling-ahlfors Transform on Radial Functions

For 1 ≤ p ≤ 2, we prove sharp weak-type (p, p) estimates for the BeurlingAhlfors operator acting on the radial function subspaces of Lp(C). A similar sharp Lp result is proved for 1 < p ≤ 2. The results are derived from martingale inequalities which are of independent interest.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l’institut Fourier

سال: 2002

ISSN: 0373-0956

DOI: 10.5802/aif.1896